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Abstract

This paper unveils novel insights into the impact of trader bias on herding and contrarian be-

haviour in financial markets within a sequential trading microstructure framework. We formu-

late a generalised cumulative prospect theory (CPT) trader herding model, allowing gain-loss

asymmetry in CPT and loss-tolerant traders. Contrary to the previous model, our generalised

approach suggests that a trader can engage in both herding and contrarian behaviour rather than

a clear-cut preference, and they can occur at mild price deviations too. Our findings reveal that

in markets with a substantial proportion of loss-tolerant agents, assuming no gain-loss asym-

metry in CPT can incur significant costs on the model’s predictive power. This emphasises

the necessity of employing the generalised model. Moreover, we establish theoretical upper

bounds on loss attitude, determining the threshold that triggers herding and contrarianism, thus

facilitating regulatory monitoring. We generate cross-country predictions and find that median

subjects in advanced economies have higher herding and lower contrarian tendencies than the

ones in developing countries. We also reconcile previous unexplained experimental evidence.
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1 Introduction

Over the past two decades, the global economy has experienced significant uncertainties, often
characterized by substantial price fluctuations in financial markets. One direction of research that
has garnered considerable attention is herding and contrarian behaviour among investors – the
tendency of individuals to trade in line with or against others’ actions and against their private
information. We investigate the impacts of biased informed traders on herding and contrarianism
dynamics in the financial markets. Our approach revolves around constructing a simple sequen-
tial trading market microstructure model, incorporating insights from cumulative prospect theory
(CPT) by Tversky and Kahneman (1992) to account for investor decision-making biases.

CPT offers a suitable framework for our study as it accounts for various decision-making bi-
ases. Firstly, it has a value function showing how payoffs are evaluated. It captures loss attitude
through a parameter λ and curvature of the value function through γ . Secondly, a probability
weighing function indicates how probabilities are evaluated by decision-makers. The degree of
probability distortion is captured by δ . Both allow different parameters in gain-loss regions: γG

and δG in the gain region, γL and δL in the loss region, this captures gain-loss asymmetry.
The foundation of our research builds upon the seminal work of Avery and Zemsky (1998)

(henceforth AZ), who examined herd behaviour in the financial market. Their model utilised the
sequential trading market microstructure model by Glosten and Milgrom (1985). The models à la
AZ all feature Bayesian updating informed traders who have an information advantage over the
market maker. Uninformed traders trade randomly due to exogenous reasons such as liquidity.
There is also a market maker who sets prices in each trading round making zero profit subject to
unmodelled competition. The market structure is common knowledge. There is one asset with
two states. AZ demonstrated that herd behaviour could not occur when only uncertainty about the
asset’s value was present. Although this paper’s assumptions might seem restrictive, it laid a solid
theoretical foundation for exploring the influence of various factors on herding behaviour.

Subsequent research relaxed certain assumptions or introduced new elements. Cipriani and
Guarino (2008) modelled heterogeneous informed traders. Park and Sabourian (2011) delved into
the role of signal structure. Cipriani and Guarino (2014) built a structural model to empirically test
herding. Cipriani, Guarino, and Uthemann (2022) extended this model by introducing price elastic
noise traders to study the effects of financial transaction tax (FTT) on financial market outcomes.
Kendall (2023) incorporated CPT traders to investigate the role of preferences. Another strand of
literature dives into the effects of probability distribution ambiguity (J L Ford, Kelsey, and Pang
2005; Dong, Gu, and Han 2010; J. L. Ford, D. Kelsey, and W. Pang 2013; Boortz 2016).

However, early theoretical models struggled to match experimental observation on strong con-
trarian tendency and abstention from trade (Drehmann, Oechssler, and Roider 2005; Cipriani and
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Guarino 2005, 2009; Park and Sgroi 2016). Kendall (2023) demonstrated the significant role of
CPT traders in herding and contrarianism. While the model offers an improved fit, it still en-
counters challenges in fully aligning with experimental evidence. Our model maintains a close
connection to Kendall’s, yet introduces crucial differences.

Firstly, his model assumed no gain-loss asymmetry in CPT, setting γ = γG = γL and δ = δG =

δL. This assumption generally does not hold in data. Secondly, Kendall only considered loss
aversion (λ > 1) and neglected loss tolerance (λ ≤ 1). More recent evidence supports the latter
too. Zeisberger, Vrecko, and Langer (2012) provided CPT estimates at the individual level for
73 subjects, only 1 subject showed no gain-loss asymmetry and 25 displayed loss tolerance. Our
generalised CPT trader model avoids such assumptions. Thirdly, we adhere to the definitions of
herding and contrarianism proposed by AZ, commonly used in the literature. While Kendall fol-
lowed the definition of Banerjee (1992) and Cipriani and Guarino (2009), leading to fundamental
modelling differences. Further elaboration on these differences is discussed in Section 3.3.

We start by characterising a generalised CPT trader herding model, allowing gain-loss asym-
metry in CPT and loss-tolerant traders. Then we explore dynamics under this framework. Firstly,
we found that traders can engage in both herding and contrarian behaviour, contrary to a clear-cut
preference predicted by Kendall (2023). This aligns with the unexplained experimental observation
that some subjects engaged in both behaviours. Secondly, we show the occurrence of an informa-
tion cascade where the market belief diverges from the underlying state of the world. Thirdly, we
created cross-country predictions and found that median subjects in advanced economies have a
higher tendency for herding and a lower tendency for contrarian behaviour compared to develop-
ing economies. As markets become more informed, such tendencies weaken in both regions. This
suggests a sophisticated financial system can reduce herding and contrarian tendencies.

Fourthly, we show that for markets consisting of loss-tolerant agents, shutting down gain-loss
asymmetry can be very costly on the model’s predictive power. While less so if the proportion of
loss-averse traders is high. Finally, we reconcile previous experimental evidence, capturing strong
contrarian tendencies but weak herding tendencies under various market specifications. Under
the same market structure as previous experiments, we match the levels of herding and contrarian
behaviour. Then we show how our model is linked and differs to Kendall’s. We present an extended
CPT trader herding model without gain-loss asymmetry and explore various dynamics with closed-
form solutions for prices. By considering only loss-averse traders, we obtain similar clear-cut
preference as in Kendall’s work.

The rest of the paper is as follows. Section 2 reviews the literature on herd behaviour and
prospect theory. Section 3 presents the model. Section 4 analyses dynamics within the gener-
alised CPT trader herding model. Section 5 discusses the extended CPT trader model. Section 6
concludes.
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2 Related Literature

2.1 Sequentially Trading Herding Models

Banerjee (1992) was among the first to model herd behaviour. Agents follow a sequential decision
process where earlier decisions can be observed. He showed situations where information revealed
in the predecessor’s action outweighs one’s information so that own signal is disregarded. Similar
sequential trading models have been used to show how herd behaviour can impede information
coming into the market (Welch 1992; Chamley and Gale 1994; Bulow and Klemperer 1994).

However, those models are not suitable to analyse how herd behaviour can affect asset price.
Price is inflexible in those models, but in the financial market earlier decisions are reflected in
the subsequent price. AZ’s paper was the first to address this issue by endogenous prices. They
modified the sequential trading model by Glosten and Milgrom (1985). There is a single asset with
two states; informed and noise traders; and a market maker providing bid and ask prices. Agents
follow a Bayesian updating process when information arrives. The price mechanism prevents herd
behaviour from happening when there is only uncertainty about the value of the asset. Herding is
possible when the dimension of uncertainties increases. Our paper focuses on value uncertainty.

Subsequent research was built on top of AZ and studied the role of different factors. Cipriani
and Guarino (2008) incorporated heterogeneous informed traders with different views of funda-
mental values and showed that an information cascade can occur. They also showed that contagion
can lead to informational cascades by adding another asset. Park and Sabourian (2011) modified
the private signal structure by introducing a moderate state. Herding (contrarianism) can occur if
private information satisfies U-shaped (hill-shaped) property, where investors place a higher(lower)
weight on extreme states than on moderate ones. They argued that U-shaped signals induce herding
instead of multidimensionality proposed by AZ. Kendall (2023) incorporated CPT to investigate
the role of preferences, and showed that preference for future returns induces herding or contrarian.

The theoretical herd models are difficult to test empirically due to data availability on traders’
private information. Cipriani and Guarino (2014) built a structural rational herding model that
can be empirically estimated using financial data. They developed their framework using work by
Easley and O’Hara (1987) to test parameters via maximum likelihood. Using data on an NYSE
stock, Ashland Inc, they found 2% herd buy and 4% herd sell on average. Recently, Cipriani,
Guarino, and Uthemann (2022) extended the model by introducing price elastic noise traders to
study the effects of financial transaction tax (FTT) on welfare.

Another strand of literature focuses on the role of ambiguity on herding and contrarian be-
haviour. It describes a scenario when the agent does not know the precise distribution of an event.
J L Ford, Kelsey, and Pang (2005) first demonstrated herding and contrarian behaviour can occur
by introducing ambiguity. Dong, Gu, and Han (2010) allowed separation between ambiguity and
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ambiguity aversion. J. L. Ford, D. Kelsey, and W. Pang (2013) studied the impact of ambiguity
using neo-additive capacities. Boortz (2016) built on top of this but relies on a more stringent
definition of herding and varying ambiguity to price. They found that herding is not possible if
investors have fixed ambiguity preferences, while contrarianism is.

Various experiments tested the AZ predictions. Drehmann, Oechssler, and Roider (2005) con-
ducted an internet experiment with more than 6,400 subjects including 267 consultants. Cipriani
and Guarino (2005) tested this in a laboratory setting with 216 students, Park and Sgroi (2016)
used student subjects with 1,350 trades 1. These studies found a low level of herding, supporting
AZ’s no-herding prediction, but also observed contrarian behaviour and abstention from trade. Two
other studies adopted a more relaxed herding definition. Cipriani and Guarino (2009) sampled 32
financial professionals, and observed strong contrarian tendencies too. They compared their results
with previous studies by adapting the same definition and observed reassuring similarities.

Kendall (2023) used 46 student subjects in his study. In the main treatment, he directly pro-
vided subjects with the correct Bayesian posterior to control for Bayesian errors. This led to a
higher level of herding than contrarian behaviour. However, a main concern arises that providing
subjects with the Bayesian posterior directly removes uncertainty in probabilities, as they are now
given exogenously by the experimenter. This creates more herding-type traders than contrarian
types. In the second treatment, where the correct Bayesian posterior is not provided directly, re-
sults are comparable to Cipriani and Guarino (2009). Across both treatments, he observed that
some traders can engage in both herding and contrarian behaviour, a phenomenon not captured by
the theory. The author demonstrated that the CPT trader herding model fits the data better com-
pared to previous ones. A detailed discussion of the experiments, their challenges, and how our
generalised CPT trader model reconciles the evidence is provided in Section 4.4.

2.2 Prospect Theory

Tversky and Kahneman (1992) (henceforth TK) provided cumulative prospect theory (CPT). The
model comprises two primary components. Firstly, the value function captures the value assigned
by the decision-maker to an uncertain outcome. The functional form enables it to represent devi-
ations from the reference point and loss attitude. The second element involves probability distor-
tions. TK proposed a probability weighting function that transforms objective probabilities into
subjective ones. This accounts for the phenomena of underweighting high-probability and over-
weighting low-probability events. Different parameters are allowed for the loss and gain domains.

1. Park and Sgroi (2016) examined the theoretical framework proposed by Park and Sabourian (2011) with 3 types
of signals. Notably, signals S1 and S3 exhibit a monotonic behaviour, akin to those discussed in the context of AZ.
Our discussion focuses on this for comparison purposes.
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(i) Value function Ω(.):

Ω(π)

πγG if π ≥ 0

−λ (−π)γL if π < 0

(ii) the probability weighting function w(.) in gain and loss domains:

w+(P) =
PδG

(PδG +(1−P)δG)1/δG
;w−(P) =

PδL

(PδL +(1−P)δL)1/δL

where π is the payoff relative to the reference point, γG is the exponent of the value function
in the gain region, and γL is the exponent of the value function in the loss region. λ indicates the
attitude towards loss. It is typically assumed to be greater than 1, indicating loss aversion. If it’s
smaller than 1, it indicates loss tolerance. δG is the probability weighting function exponent in
the gain domain. δL is the probability weighting function exponent in the loss domain. P is the
objective probability. In expected utility theory, a rational decision-maker computes the expected
utility of a risky asset with two potential payoffs π1 and π2 according to the following: E[u(π)] =

Pu(π1)+ (1−P)u(π2). In prospect theory, a decision-maker computes perceived expected utility
according to the following: E[Ω(π)] = w(P)Ω(π1)+w(1−P)Ω(π2).

The evidence for gain-loss asymmetry in CPT parameters is strong. Rieger, Wang, and Hens
(2017) estimated the parameters using an international survey for 53 countries with a sample of
6912 university students. There is a clear heterogeneity and gain-loss asymmetry. Zeisberger,
Vrecko, and Langer (2012) reported CPT at the individual level, 72 out of 73 subjects displayed
gain-loss asymmetry. Early studies supported loss aversion. TK’s study reported 2.25. More recent
evidence shows a much lower number. In Rieger, Wang, and Hens (2017)’ study, λ are 1.2 and
1.37 for subjects in the UK and USA. Barberis, Jin, and Wang (2021) used a value of 1.5 to explain
stock market anomalies. Chapman et al. (2018) used a survey of the US population with a sample
size of 2000. They found that 50% of the sample showed loss tolerance. In Zeisberger, Vrecko,
and Langer (2012)’s study, 34% of the subjects showed loss tolerance.

3 The Model

We first present the AZ baseline model. Then we show modified CPT trader model. After that, we
define herding and contrarian behaviour. Finally, we simulate the models to show the dynamics.

3.1 Baseline Model

The baseline model is as follows:
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The Asset: There is a single risky asset with unknown fundamental value V . It is calculated
based on the present value of future cash flows. It takes values VL and VH (where VH >VL). Without
loss of generality, we can normalise VL = 0,VH = 1.

The Market: The traders’ action is defined as: xt ∈ {buy,sell,hold}. Trading takes place at
a sequence of discrete time t ( t=1,2,3,...T), after T the value is revealed. For simplicity, one can
define a sequence as a trading day. An informational event that affects asset value occurs before
the day starts, and at the end of the day true value of the asset is revealed. Informed traders learn
the value of the asset throughout the day with their private signal and observation of history. For
a given sequence, V follows a Bernoulli distribution with a single trial, with fixed probabilities
for high and low states. Across sequences, for example, different trading days, V can be assumed
to be independently distributed, the same as in Cipriani and Guarino (2014). Though they are not
necessarily identical. In this paper, we focus on the dynamics within a single sequence. A sequence
could also be defined as a quarter, where quarterly earnings of an asset are typically revealed.

Each trader interacts with the market maker, exchanging one unit of an asset for cash or no trade
(hold). The history is defined as Ht = {(x1, p1), ...(xt−1, pt−1)}. Following the literature, the price
of the asset is given by the public expectation of the asset’s true value pt = E[V |Ht ] = P(VH |Ht).
This is the price before trades take place in t and reflect all public information. Price is a martingale
to the history of trades and prices. E[pt+1|Ht ] = E[E[V |Ht+1]|Ht ] = E[V |Ht ] = pt . H1 is the initial
history before any trade occurs. The prior probability for the high state characterises the prior
which we set exogenously to be 0.5; p1 = E[V |H1] = E[V ] = P(VH) = 0.5.

The Market Maker: The market maker makes 0 expected profit due to unmodelled compe-
tition. The market maker does not receive any private information. The information asymmetry
between market makers and informed traders creates the bid-ask spread as shown by Glosten and
Milgrom (1985). The market maker sets different prices at which they are willing to sell and buy,
as they have to consider the possibility of information advantage of informed traders. The bid
and ask prices are set by the market maker before traders in t arrive. bt = E[V |Ht ,xt = sell],at =

E[V |Ht ,xt = buy]

The Traders: The trading sequence is exogenously given, and the number of traders is finite.
Each trader can only trade once at the time of arriving. There are two types of traders, informed
and noise. Traders’ type is private information and not known by the public or market maker. The
probability of the informed trader arriving is exogenous µ , and the noise trader is 1−µ .

Noise trader: they trade randomly for unmodelled reasons such as liquidity with exogenously
given equal probability 1/3 for each action. The probability of a noise trader’s action is θ =

(1− µ)/3. AZ noted that their model is a special case of Glosten and Milgrom (1985) model. In
their model, noise traders have inelastic demand and do not respond to prices. Thus, the market
never collapses, and noise traders absorb any possible losses.
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Informed trader: Informed traders receive exogenous private information S ∈ {SL,SH} where
S can be high or low signals. They also observe the trading history and public information. Their
expected value of the asset is E[V |S,Ht ] = P(VH |S,Ht). They buy if the expected value is greater
than the ask price, and sell if it is smaller than the bid price, otherwise is no trade. We denote as
follows: (i)buy if E[V |S,Ht ]> at . (ii)Sell if E[V |S,Ht ]< bt (iii)No trade in other cases.

The Signal: The private signals received by informed traders are independent of history. The
distribution is i.i.d and defined by P(S|V ), it is conditional on the state of the world. S is assumed
to be symmetric binary signals with precision 1 > q > 0.5. P(SL|VL) = P(SH |VH) = q. This means
that the precision increases as q becomes larger, and the signals become more informative. The
assumption that q > 0.5 implies the signals are informative.

Updating process: Public belief/price, bid and ask prices are updated from t to t + 1 when
trading action xt is observed in t + 1. Table 1 provides a summary of the process. Boortz (2016)
has provided a good summary of the key formulas in the AZ model, which I include in Appendix
7.1.

Table 1: Trading sequence summary

t = 1 ⇒ t = 2 ⇒ The process repeats until T

History H1 the initial history before any trade occurs.

It contains no useful information.

H2 = {x1, p1}. Price and trading action are

included in the history.

Market

maker

The market maker does not know trader’s

action x1 when updating b1 and a1, they

update according to conditional expectation

of the asset b1 = E[V |H1,x1 = sell], a1 =

E[V |H1,x1 = buy]. Since we assume the

market maker knows the proportion of in-

formed traders, the precision of private sig-

nal q and the probability of noise traders tak-

ing a certain action, they have sufficient in-

formation to compute this.

Similar to t=1, market maker sets b2 =

E[V |H2,x2 = sell], a2 = E[V |H2,x2 = buy].

However, H2 now contains trading action x1.

Note that x2 is not observed when b2 and a2

are set. Trading action x1 could be due to

an informed trader or noise trader, but pub-

lic belief p2 factors in this since the market

structure is of common knowledge.

Public ex-

pectation

p1 = E[V |H1] = 0.5. We assume an initial

prior of 0.5 for the high value state.

p2 = E[V |H2] = P(V = 1|H2).Reflects all

public information up to t=1.

Traders A trader arrives exogenously. It could be a

noise or an informed trader. An informed

trader trades based on private signals only.

E[V |S] = E[V |H1,S], herding or contrarian-

ism cannot occur this period. Trading action

x1 takes place. This stage is completed.

A trader arrives exogenously. Informed

trader trade by comparing expected

value based on private signal and history

E[V |S,H2] with b2 and a2. A trading action

x2 takes place.
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3.2 Modified Model

We only modify the behaviour of informed traders, all other features of the market microstructure remain

identical to the baseline model in section 3.1. We replace the expected utility theory with prospect theory.

Informed traders with both public and private information
They receive exogenous private information S ∈ {SL,SH} where S can be high or low signals. They also

observe the trading history and public information Ht . Instead of computing the expected value of the asset

and comparing it to bid and ask prices. Traders now compute the utility associated with the expected payoff

of a certain trading action through prospect theory. If the action is expected to generate positive utility, they

implement the action. Recall that Ω is the value function of CPT, w is the probability weighting function, at

and bt are the bid and ask prices, VH and VL are the high and low-value states of the asset, π is the payoff.

We denote informed traders’ decision-making with both private and public signals as follows:

(i)Buy if EΩ[π|S,Ht ] = Ω(VH −at)∗w[P(VH |S,Ht)]+Ω(VL −at)∗w[P(VL|S,Ht)]> 0

(ii)Sell if EΩ[π|S,Ht ] = Ω(bt −VH)∗w[P(VH |S,Ht)]+Ω(bt −VL)∗w[P(VL|S,Ht)]> 0

(iii)No trade if neither (i) and (ii) are satisfied.

Condition (i) states that an informed trader buys if the expected utility of buying conditional on all avail-

able information is positive. The payoff is VH −at if the high-value state realises since traders buy at price

at . The value perceived by the trader of that payoff is Ω(VH − at). The associated probability of the high-

value state is P(VH |S,Ht). The probability perceived by the trader is w[P(VH |S,Ht)]. A similar logic applies

to the low-value state. Then we multiply the utility perceived Ω in each state by its associated probability

w and sum up. This gives us the expected utility of buying perceived by the informed trader. Bias in the

decision-making process is captured by Ω and w which we discussed in section 2.2. Condition (ii) follows

the same idea for the sell side. Payoffs are bt −VH and bt −VL in high and low-value states now since they

can sell at price bt . Condition (iii) is straightforward, giving us the no-trade condition.

Informed traders with only private information:

Our herding and contrarian definition in the next section requires a hypothetical situation where in-

formed traders only consider private signals. If we don’t allow history in informed traders’ decision-making

process, their decision-making is as follows:

(iv)Buy if EΩ[π|S] = Ω(VH −a1)∗P(VH |S)+Ω(VL −a1)∗P(VL|S)> 0

(v)Sell if EΩ[π|S] = Ω(b1 −VH)∗P(VH |S)+Ω(b1 −VL)∗P(VL|S)> 0

(vi)No trade if neither (iv) and (v) are satisfied.

Similar to the above, payoffs in the high and low-value states are transformed through prospect theory

value function Ω(.). The probabilities without history are not transformed through the weighting function.

The reasoning is that signal precision is exogenous given that is known to the informed traders, it is not

affected by any biases. We can show that the probability of a state conditional on only the private signal

equals the precision of the signal2. Put this formally, P(VH |SH) = P(VL|SL) = q,P(VL|SH) = P(VH |SL) =

2. P(VH |SH) =
P(SH |VH)P(VH)

P(SH |VH)P(VH)+P(SH |VL)P(VL)
=

q∗0.5
q∗0.5+(1−q)∗0.5

= q.
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1− q. With history, the probabilities are first computed rationally using the Bayesian formula as in the

baseline model, then transformed through the weighting function w(.) of prospect theory. The intuition is

that informed traders face uncertainty about the value of the asset. They are affected by biases when they

evaluate the probabilities generated using the Bayesian formula. Notice also that we are computing the

payoffs using bid and ask in the first period when history is not allowed. As it contains only the initial

period when there was no history of trade. This approach is in line with AZ and Park and Sabourian (2011).

We return to the baseline scenario if we switch off all features of CPT, setting γG = γL = λ = δG = δL = 1.

3.3 Definition of Herding and Contrarian Behaviour

There are several definitions of herding and contrarian behaviour in the literature. One notion requires ac-

tions to converge irrespective of private information, Lakonishok, Shleifer, and Vishny (1992) defined herd-

ing as the probability of fund managers taking the same trading decisions simultaneously. However, Park

and Sabourian (2011) noted that such a case is not interesting in the context of an informationally efficient

financial market. Since it is uninformative when informed traders act alike, prices remain unchanged.

Another strand defines herding and contrarian as trading independent of their private signal. (Banerjee

1992; Bikhchandani, Hirshleifer, and Welch 1992; Cipriani and Guarino 2008, 2009; Kendall 2023). For

instance, buying given high or low signal after a price increase counts as herding. However, this means that

a trader who trades in the same direction as the private signal can be considered as herding or contrarian

behaviour. It does not impede the flow of private information into the market, as order direction and private

signal align. It could be that they are just following their private signal instead of trend following.

Avery and Zemsky (1998) requires a trader’s private signal to be overwhelmed by the public signal that

contains information about others’ actions. This is the definition followed by the majority of the literature,

(Cipriani and Guarino 2005; Drehmann, Oechssler, and Roider 2005; Park and Sabourian 2011; Cipriani

and Guarino 2014; Boortz 2016; Park and Sgroi 2016). We follow Park and Sabourian (2011)’s set-up

precisely. For instance, given asset price has dropped, herd sell occurs if the trader sells based on private

signal and history, but otherwise would have bought the asset if conditional on only the private signal. We

define herding and contrarianism behaviour formally below:

Definition 1. Herd and Contrarianism behaviour
1.A. Herd and Contrarianism buy

(B1) EΩ[π|S] = Ω(b1 −VH)∗P(VH |S)+Ω(b1 −VL)∗P(VL|S)> 0

The expected utility of selling conditional on only private signal is positive

(B2) EΩ[π|S,Ht ] = Ω(VH −at)∗w[P(VH |S,Ht)]+Ω(VL −at)∗w[P(VL|S,Ht)]> 0

The expected utility of buying conditional on both private signal and history is positive

(B3) (i)E[V |Ht ]> E[V ]. Price has increased since first period, pt > p1.

(ii)E[V |Ht ]< E[V ]. Price has decreased since first period, pt < p1.

1.B. Herd and Contrarianism sell
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(S1) EΩ[π|S] = Ω(VH −a1)∗P(VH |S)+Ω(VL −a1)∗P(VL|S)> 0

The expected utility of buying conditional on only private signal is positive

(S2) EΩ[π|S,Ht ] = Ω(bt −VH)∗w[P(VH |S,Ht)]+Ω(bt −VL)∗w[P(VL|S,Ht)]> 0

The expected utility of selling conditional on both private signal and history is positive

(S3) (i)E[V |Ht ]< E[V ]. Price has decreased since first period, pt < p1.

(ii)E[V |Ht ]> E[V ]. Price has increased since first period, pt > p1.

Herd (Contrarianism) buy occurs if and only if conditions B1, B2 and B3i (B1, B2, B3ii) are satisfied.

Herd (Contrarianism) sell occurs if and only if conditions S1, S2 and S3i (S1, S2, S3ii) are satisfied. For

herd and contrarianism buy, condition 1 checks whether informed traders’ expected utility of selling is

positive conditional on private signal only. If so they would have sold the asset. Condition 2 checks whether

informed traders’ expected utility of buying is positive conditional on private signal and history of trade. If

so they buy. Condition B3 ensures that herding is in line with the movement of the crowd, and contrarianism

is against the crowd. The opposite holds for herd and contrarianism sell. B1 and B2 > 0 or S1 and S2> 0

are necessary conditions for herd or contrarianism. They are not necessarily always greater than 0, if they

are smaller than or equal to 0, herd or contrarianism cannot occur.

Conditions B2 and S2 are identical to the ones we discussed in the modified model. They check if

the expected utility of a certain trading action conditional on both private signal and history is positive.

Conditions B1 and S1 are “what if” situations, if informed traders only trade based on private signals, what

would have happened? For instance, given both B1 and B2 are positive, the informed trader would have sold

the asset if the decision was based on only their private signal. When the decision is based on both private

signals and history, they buy. Either herding or contrarianism occurs, if the price has increased (B3i) then

we have herd buy, if the price has dropped (B3ii) then we have contrarianism buy.

To compare to Kendall (2023)’s CPT trader model, I focus the discussion on the buy side, the sell side

follows the same idea. Kendall’s model only requires B2 to be satisfied given both high and low signals.

For instance, if B2 > 0 given SH and SL, either buy herding or contrarian behaviour occurs. B3 then pins

down herding or contrarian behaviour. Thus, a buy order given a high signal and price increase could be

considered as herding. However, we don’t know if the traders are following the trend or not. They could

be just following this positive private signal, instead of buying because others are doing so. To truly pin

down a trend following behaviour, one should check what happens if we shut down social leaning. That

is removing history from their decision-making, is there a switch in trading decisions? If so then we have

a clear trend-following behaviour. Condition B1 allows us to do so, in line with the definition used in the

majority of the literature. Additionally, we introduce decision-making bias in condition 1, as discussed in

the section above. Our model imposes more stringent conditions for herd and contrarian behaviour.

3.4 Model Simulation

In this section, we compare the dynamics in the baseline and modified model using simulations. We set the

proportion of informed traders µ to be 0.4 and private signal precision q to be 0.6. The choices of model
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parameters are not restrictive. For instance, we could have a market with a large proportion of informed

traders, setting µ to 0.8, similar dynamics present. We set CPT values to (γG,γL,λ ,δG,δL, reference point) =

(0.44,0.49,1.06,0.47,0.98,0). This is the median CPT values for subjects in the UK reported in table 3 of

Rieger, Wang, and Hens (2017). The CPT for the baseline model are (1,1,1,1,1,0), this switches off all

CPT features and returns to the expected utility framework. We compute the utility when public prior belief

pt is between 0 and 1. See appendix 7.2 for specific formulas of the model.

Figure 1 simulates the baseline model. 1(a) checks herd and contrarianism buy, 1(b) checks sell side.

For a given signal, conditions 1 and 2 are never satisfied at the same time (lines of the same colour/shape to

be above 0). Indeed herding and contrarianism cannot occur in the baseline model. Traders always make a

trade in line with their private signal.
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Figure 1: Herd and Contrarianism check in baseline model

Figure 2 simulates the modified model. In Figure 2(a), we observe herd buy with a low signal when

prior belief is between around 0.87 and 1. Since both B1 and B2 given low signal (red square lines) are

positive, B3i are satisfied too. In Figure 2(b), we observe a herd sell for informed traders with a high signal,

when prior belief is between 0 and around 0.13. Since S1 S2 (blue circle lines) and S3i are satisfied. Also,

there are situations when traders decide not to trade when B2 and S2 are both negative given a signal.

The figures allow us to see the impact of the definitional difference between our and Kendall (2023)’s

CPT trader herding model. In Kendall’s model, B1 and S1 conditions are not needed. One needs to check

for a given order direction, do both signals create positive utility. When prior belief is between around 0.87

and 1, informed traders would be considered to engage in herd buying. Since B2 given both high and low

signals generates positive utility in that region. B2 given a low signal is the driving condition in both our

models, giving us the same price region. However, in Kendall’s model informed traders with a high signal

would be considered to engage in herd buying too. While in ours it does not qualify as herd buy, since B1 is

negative. We don’t see a clear switch behaviour in the trader’s behaviour induced by the observing of other’s
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actions through prices. Considering such cases as herding or contrarian could lead to overestimation. This

justifies our definition choice, consistent with the majority of the literature.
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Figure 2: Herd and Contrarianism check in modified Model

Before moving onto a generalised model without specific parameter values. Let’s first consider the

intuition behind the model mechanisms, and why it can generate herding and contrarian behaviour. In

condition B1 the low value state produces the gain term that pulls informed traders towards selling. Since

bt −VL > 0 and bt −VH < 0 by assumption. While in condition B2 the low value state produces the loss term

that pulls informed traders away from buying. Attaching a higher probability to this state makes B1 easier

to satisfy at the cost of B2, and a low probability makes B2 easier to satisfy at the cost of B1. Intuitively,

there should be optimal choices of parameters that allow both conditions to be satisfied.

4 Generalised CPT Trader Model Dynamics

There are many states for herding and contrarian behaviour. Buy/sell herding or contrarian behaviour given

high and low signals. For each of the 8 states, there are 3 conditions to check (B1,B2,B3 or S1,S2,S3).

For each of those conditions, there are 5 CPT parameters and 2 market structure parameters. This makes

it challenging to track the model dynamics. We derive a generalised bias upper bound for sell(sGBUB)

and buy orders(bGBUB). This bound is a function of model parameters that place the upper bound on loss

attitude, once satisfied either herding or contrarian behaviour occurs. We allow loss tolerance (λ < 1) and

gain-loss asymmetry in CPT(δG,δL,γG,γL), and refer to this model as a generalised CPT trader herding

model.

In section 4.1, we derive the sGBUB and bGBUB to characterise the necessary and sufficient conditions

for herding and contrarian behaviour. We show how our model can capture unexplained observations in

Kendall (2023)’s study. Then in section 4.2, we show the occurrence of information cascades by simulating
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a market for 1000 periods with heterogeneous CPT traders. Next, in section 4.3, we generate cross-country

predictions for median subjects in 53 countries. In section 4.4, we reconcile previous experimental evidence

on strong contrarian and weak herding tendencies. Finally, in section 4.5, we calibrate the model using CPT

estimates by Zeisberger, Vrecko, and Langer (2012) for 73 subjects. We argue that for markets consisting

of a high proportion of loss-averse traders, shutting down gain-loss asymmetry is not costly on the model’s

predictive power. However, if a fair amount of loss-tolerant subjects are present, shutting down gain-loss

asymmetry in CPT is extremely costly, leading to inaccurate herding and contrarian behaviour predictions.

4.1 Generalised Herding and Contrarianism Conditions

Lemma 1. Conditions 1 and 2 of buy herding and contrarianism for the generalised model can be expressed

with buy generalised bias upper bound (bGBUB); sell herding and contrarianism can be expressed with sell

generalised bias upper bound (sGBUB):

(i)Buy: λ < bGBUB. bGBUB =
[µ(1−q)+θ ]γG

(θ +µq)γL

K
1−K

min{(2θ +µ)γL−γG ,
(1−K)1+δG

K1+δL

pδG−γL
t

(1− pt)δL−γG
VB}

(ii)Sell: λ < sGBUB. sGBUB =
[µ(1−q)+θ ]γG

(θ +µq)γL

1−K
K

min{(2θ +µ)γL−γG ,
(K)1+δG

(1−K)1+δL

pγG−δL
t

(1− pt)γL−δG
VS}

where VB =C[(µq+θ)pt +(µ(1−q)+θ)(1− pt)]
γL−γG , VS =C[(µ(1−q)+θ)pt +(µq+θ)(1− pt)]

γL−γG

C = [(1−K)pt +K(1− pt)]
δL−δG

{[(1−K)pt ]
δL +[K(1− pt)]

δL}1/δL

{[(1−K)pt ]δG +[K(1− pt)]δG}1/δG

K is a dummy variable takes value q if we have low signal, 1−q if we have high signal

In definition 2 of herding and contrarianism, there are 3 conditions (B1,B2,B3) for the buy side, and 3

conditions for the sell side (S1,S2,S3). Lemma 1 rewrites conditions 1 and 2 as upper bound on loss attitude.

The use of dummy variable K allows us to capture the symmetric property of the conditions. Lemma 1(i)

condenses B1 given high signal, B2 given high signal, B1 given low signal, and B2 given low signal into one

inequality. This gives us an upper bound on loss attitude, which we refer to as buy generalised bias upper

bound (bGBUB). The same idea applies to the sell-side in lemma 1(ii), where we have sell generalised bias

upper bound (sGBUB). The proof is fairly technical, we include it in appendix 7.3.

The generalised bias upper bound is a function of model parameters which can be calculated given a set

of CPT preferences and market structure. If the loss attitude is smaller than this bound, then herding and

contrarianism should occur for a trader with this set of preferences. For instance, in figure 2(a), the highest

bGBUB is around 1.4 given a low signal. In the simulation, we assumed λ = 1.06. Thus conditions B1 and

B2 of our herding and contrarianism definition are satisfied, we should expect herd or/and contrarian buy

given low signal. We use lemma 1 to characterise the necessary and sufficient conditions for herding and

contrarianism in the following theorem.

Theorem 1. Necessary and sufficient conditions for herding and contrarianism for the generalised model.

(i)If an informed trader engages in buy herding (contrarianism), then λ is smaller than bGBUB and pt > 0.5

(pt < 0.5). (ii)If an informed trader engages in sell herding (contrarianism), then λ is smaller than sGBUB

and pt < 0.5 (pt > 0.5).
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Theorem 1 follows naturally from lemma 1. It characterises the necessary and sufficient conditions for

herding and contrarianism by placing an upper bound on a loss attitude. Conditions 1 and 2 of herding and

contrarianism definition ensure a switch in trading direction by an informed trader if public history Ht were

removed from the decision-making process. If an informed trader herds or act as a contrarian, conditions

1 and 2 have to be satisfied, this is guaranteed if λ is smaller than bGBUB or sGBUB. Condition 3 of the

herding and contrarianism definition is almost satisfied at all times since it only requires price movement.

The price movements pin down the type: herding and/or contrarian behaviour.

Given the proportion of informed traders µ , private signal precision q, and CPT parameters, one can

check if the loss attitude is within bGBUB or sGBUB to induce herding or contrarianism. For instance, in

figure 2(a), we observed herd buy given low signal. Using K = q and model parameters, the highest bGBUB

is around 1.4 for pt > 0.5. In the simulation, we assumed λ = 1.06, so the necessary and sufficient condition

is satisfied. When pt < 0.5, bGBUP is smaller than 1.06. So we do not observe contrarianism buy.

The implications of the theorem are as follows: firstly, regulators and practitioners could utilise these

predictions. One can monitor the occurrence of herding or contrarian behaviour based on the range of

loss attitudes shown by traders of certain asset classes, markets or stocks. Secondly, the necessary condition

places an upper bound on loss attitude, a smaller loss attitude parameter allows a higher chance of herding or

contrarianism. This suggests traders who engage in herding or contrarianism are likely to be less loss-averse

than the ones who don’t. This can cause large price deviation.

Proposition 1. Generalised CPT Trader can engage in both herding and contrarian behaviour.

Kendall (2023)’s theory predicts that a CPT trader makes either herding or contrarian decisions, but not

both. If γ > δ , the trader can engage in only contrarian behaviour. If γ < δ , the trader can engage in only

herding. He showed that 79% of experimental subjects across both his treatments have a clear preference,

consistent with the theory. However, a 10% decision deviation was allowed in this fitness calculation. For

instance, if a herd type (γ < δ ) also engaged in less than 10% of contrarian decisions. This behaviour

is classified as consistent with the theory. Removing the deviation allowance, only around 22% of the

subjects show a clear-cut preference for either herding or contrarian. Our generalised model addresses this.

Proposition 1 states that a generalised CPT trader can engage in both herding and contrarian behaviour.

Since we allowed gain-loss asymmetry and loss tolerance, it is challenging to derive the proof explicitly.

We show this using a set of plausible CPT values reported by Zeisberger, Vrecko, and Langer (2012).

We use subject 27 in Table 5 pooled session results. This subject has (γG,γL,λ ,δG,δL, reference point) =

(0.87,1.03,0.97,1.14,0.61,0). We plot bGBUB given low signal. If the loss attitude is smaller than a GBUB

with price movements, then the necessary and sufficient condition of our theorem 1 is satisfied. In figure 3

we observe contrarian buy when price is smaller than 0.5, since λ is smaller than bGBUB under some price

regions. There is herd buy when the price is greater than 0.5 at all regions (other than the boundary point

when pt = 1). A generalised CPT trader can engage in both herding and contrarian behaviour instead of a

clear-cut preference for a certain type of behaviour. Loss-tolerant traders have a higher tendency for such

behaviour.
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Figure 3: bGBUB given low signal

Proposition 2. Herd and contrarian behaviour do not necessarily occur at extreme prices, they could also

occur at mild price deviation.

Without gain-loss asymmetry in CPT and loss tolerance, herding and contrarian behaviour should only

occur at extreme prices. As Kendall (2023)’s model suggests, there is a unique price threshold that once

crossed herding or contrarian occurs for certain. Proposition 2 suggests that under mild price deviations,

herding and contrarian behaviour could also occur. The price threshold is not necessarily unique anymore.

As figure 3 indicates, contrarian buy occurs when the price is around 0 to 0.15, but also 0.48 to 0.5. The latter

has a very mild deviation from the original price of 0.5. The same idea applies to the sell-side given a high

signal. There are no closed-form solutions for prices, but one can solve it numerically using a root-finding

algorithm.

4.2 Information Cascades

So far we have examined the impacts for a given trader. What are the dynamics if we consider a sequence

of traders? To answer this, we simulate the price path for 1000 periods and show how information cascades

can occur. According to Avery and Zemsky 1998, it occurs when the public fails to aggregate information

by observing the history of trade and this leads to market inefficiency. Herding causes information blockage

in the market, but it may not necessarily be damaging. The market could still be dominated by informed

traders, thus private information could still be aggregated correctly. However, as herding becomes more

extreme, in the sense that we have a sequence of herding orders, it can lead to information cascades where

the market fails to aggregate private information.
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Figure 4: Information cascades

In each period a trader arrives and makes a trading decision buy sell or hold. We keep the market

structure the same as in previous simulations. The proportion of informed traders µ is 0.4, and the signal

precision q is 0.6. The sequence of traders is set exogenously and randomly. There are two states, high-

value state VH = 1 and low-value state VL = 0. We assume the underlying state of the world is VL. There

are 400 informed traders, of which 240 obtain a low signal, and the other 160 obtain a high signal. The 600

uninformed traders buy sell hold with equal probabilities, in the expectation that 200 of them buy, 200 of

them sell, and 200 of them hold. The first-period price is 0.5. For the informed traders, we draw CPT values

from the 73 subjects in Zeisberger, Vrecko, and Langer (2012)’s study with equal probabilities.

Figure 4 shows the price path in the baseline model and generalised CPT trader model. Even though

the market is poorly informed and noisy with only 40% of informed traders, we observe a downward trend

approaching the underlying state VL. Herding and contrarian behaviour do not occur and private information

is efficiently aggregated by the market. However, in the generalised CPT trader model, we see the formation

of bubbles and information cascades. Asset price approaches high-value state 1, the opposite state of the

world. The price from period 500 onwards hardly moves, in line with our information cascades definition.

From period 750 to 800, multiple informed sell pushes the price closer to the low-value state temporarily.

However, it is eventually dominated by multiple herd buy orders again. The formation of cascades to the

wrong state is due to the presence of multiple herd buy orders, as the private signal is not revealed by the

traders’ actions.

16



4.3 Cross-County Predictions

In this subsection, we conduct a cross-country comparison of herding and contrarian dynamics. Rieger,

Wang, and Hens (2017) estimated CPT parameters in 53 countries based on median answers in each country

using an international survey, we utilise results in Table 3. For each country, we use our theorem 1 to check if

herding and contrarian behaviour can occur under all possible asset prices given that set of CPT preferences.

We do this under various market specifications. The proportion of informed traders ranges from 20% to

100%, and private signal precision ranges from 0.6 to 0.9. We divide the 53 countries into advanced and

developing countries, with 30 advanced and 23 developing countries. Appendix 7.4 contains a detailed list.

Table 2: Herding and Contrarian In Advanced Countries

µ=0.2 µ=0.4 µ=0.6 µ=0.8 µ=1
H C H C H C H C H C

q = 0.6 87% 17% 80% 13% 67% 7% 47% 3% 43% 3%
q = 0.7 93% 17% 90% 17% 90% 10% 90% 10% 87% 10%
q = 0.8 90% 10% 77% 10% 70% 7% 67% 7% 63% 7%
q = 0.9 57% 7% 43% 7% 40% 3% 33% 3% 27% 3%
H indicates herding, C indicates contrarian. This table shows the proportion of advanced countries where
median subjects have CPT preferences that allow herding and contrarian behaviour.

Table 3: Herding and Contrarian In Developing Countries

µ=0.2 µ=0.4 µ=0.6 µ=0.8 µ=1
H C H C H C H C H C

q = 0.6 57% 26% 52% 17% 48% 13% 39% 9% 30% 9%
q = 0.7 70% 22% 70% 17% 70% 13% 70% 13% 61% 9%
q = 0.8 61% 17% 61% 17% 52% 13% 48% 13% 22% 4%
q = 0.9 22% 17% 13% 13% 13% 9% 9% 4% 9% 4%
H indicates herding, C indicates contrarian. This table shows the proportion of developing countries
where median subjects have CPT preferences that allow herding and contrarian behaviour.

Table 2 reports the proportion of advanced countries where median subjects have CPT preference that

can lead to herding and contrarian behaviour. Table 3 reports the same but for the proportion of developing

countries out of the total number of developing countries. Appendix 7.4 contains a detailed look with a

breakdown for each country. For all countries, we observe a stronger herding tendency. When q = 0.6,µ =

0.2, 87% of the countries in the advanced category have CPT preference that allows herding, compared

to 17% for contrarian behaviour. The proportions drop as markets become more informed with higher q

or µ . When q = 0.9,µ = 1, we see 27% advanced countries have a herding preference, while 3% have a

contrarian preference. This is expected, as a more informed market allows better information aggregation

by the market.

Moreover, holding the market specification fixed (same q and µ in both regions), advanced countries

have stronger herding tendencies, while developing countries have stronger contrarian tendencies. Sug-
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gesting that median subjects in advanced countries tend to trade in the direction of the crowd, and median

subjects in developing countries tend to go against the direction of the crowd. However, advanced economies

typically have a more sophisticated financial market than developing economies, with better access to in-

formation. Factoring in this, herding and contrarian tendencies in advanced economies will be weaker. For

instance, given q = 0.6 and µ = 0.2, we see 57% herding and 26% contrarian preference in developing

countries. Allow the proportion of informed traders µ to increase to 80% in advanced countries, we see

47% herding and 3% of contrarian preferences in advanced countries. This suggests that more developed

financial markets can reduce herding and contrarian tendencies.

4.4 Experimental Evidence Reconciliation

Multiple experiments tested the AZ theory directly. Both Cipriani and Guarino (2005) and Drehmann,

Oechssler, and Roider (2005) showed that informed traders rarely herd, in line with AZ theory. However,

both also observed a high proportion of contrarian behaviour, something not captured by the original theory.

Cipriani and Guarino (2009) followed a more relaxed definition of herding and contrarian behaviour and

observed a higher proportion of both behaviours. In section 5 of their paper, they controlled for such defini-

tion differences and noted that the results were consistent with previous experiments. Cipriani and Guarino

(2005) found 12% of herding and 19% of contrarian behaviour, Cipriani and Guarino (2009) found 5% of

herding ad 28% of contrarian. Authors have noted that such similarity was reassuring.

Evidence in Kendall (2023) is mixed. He followed the definition of Cipriani and Guarino (2009). In

his main treatment, he provided subjects directly with the correct Bayesian posterior to control for Bayesian

errors. He found higher levels of herding and contrarian behaviour, with the former being 34% and later

being 10.6%. However, a main concern is that by providing subjects with Bayesian posterior directly, it

takes away the uncertainty in probabilities since it is now given exogenously by the experimenter. This

would force the probability weighting function exponent of CPT to be 1, creating many more herding-

type traders than contrarian types. Since his underlying CPT trader theory suggests that when δ > γ , only

herding is possible. The author noted that there are almost 90% of subjects showed δ > γ . In his second

treatment, he doesn’t provide the correct Bayesian posterior directly. Thus, results are comparable with

Cipriani and Guarino (2009). Herding is now much lower in the second treatment, dropping to only 13.9%,

while contrarian increased to 12.8%. This matches the herding level in Cipriani and Guarino (2009), but not

the level of contrarian behaviour.

Overall, the majority of the experimental evidence suggests that traders have a strong tendency to trade

against the market and act as a contrarian, ranging from 19% to 28% using the AZ definition. While traders

rarely engage in herding behaviour, ranging from 5% to 12% of the decisions. To reconcile this, Kendall

(2023)’s CPT trader model provides us with a good starting point. However, it is difficulty to explain

the evidence giving the definitional difference in the underlying model. Even if one adjusts for definition

difference, such a CPT trader model still relies on no gain-loss asymmetry in CPT and is only able to predict

the behaviour of loss-averse traders. Both assumptions can be restrictive as we showed in previous sections.

We use Zeisberger, Vrecko, and Langer (2012)’s estimates of CPT for 73 subjects to generate theoret-
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ical predictions using our generalised CPT trader model. We don’t use Rieger, Wang, and Hens (2017)’s

estimates as in section 4.3, as they only report estimates for median subjects, eliminating outliers. Previous

herding experiments were on the individual level instead of just median subjects. To keep the dynamics

comparable, we allow heterogeneity at the individual level using the former paper.

We only check herding and contrarian behaviour when the absolute trade imbalance is greater than 2 and

smaller than 12. In Cipriani and Guarino (2005)’s study, each round had 12 subjects with a maximum of 12

trade imbalances, and they reported estimates when imbalances were greater than 2. Cipriani and Guarino

(2005) defined trade imbalances as the number of buy orders at time t minus number of sell orders at time

t-1. If at t = 1 informed trader bought the asset, then we have an imbalance of 1. If at t = 2, another trader

bought the asset, then we have an imbalance of 2. If at t = 3, another trader sold the asset, then we have an

imbalance of 1 again. Absolute trade imbalance captures the symmetric side too, For instance, if at t = 1

informed trader sold the asset, then we have a trade imbalance of -1. Considering only the magnitude, the

absolute trade imbalance is 1. Therefore, an absolute trade imbalance of 1 captures both imbalances of 1

and -1.

The price associated with each trade imbalance changes with market composition q and µ . Therefore,

we consider fixed sets of trade imbalances instead of points of prices. We name the associated price for

each trade imbalance as IB, IB1 for an absolute trade imbalance of 1, IB2 for an absolute trade imbalance

of 2 and so on. It can be computed using bayesian updating. IB1=[P(buy|VH)P(VH)]/[P(buy|VH)P(VH)+

P(buy|VL)P(VL)]. IB2=[P(buy|VH)IB1]/[P(buy|VH)IB1+P(buy|VL)(1− IB1)]. The same logic applies to

imbalances of 3 and 4. For instance, assuming µ = 1,q = 0.7, the price at trade imbalances 1,2,3,4 are

0.7,0.84,0.93,0.97 respectively; the price at trade imbalances -1,-2,-3,-4 are 0.3,0.16,0.07,0.03 respectively.

An absolute trade imbalance of 1 considers the price of both 0.7 and 0.3. Notice that they are symmetric

around the initial price of 0.5.

Table 4: Proportion of Herding and Contrarian Using AZ definition

µ=0.2 µ=0.4 µ=0.6 µ=0.8 µ=1
H C H C H C H C H C

q = 0.6 19% 26% 18% 26% 14% 25% 12% 22% 12% 22%
q = 0.7 7% 23% 8% 23% 7% 25% 4% 22% 4% 21%
q = 0.8 3% 14% 1% 22% 1% 25% 1% 23% 3% 22%
q = 0.9 0% 11% 0% 16% 1% 25% 1% 25% 1% 21%
H indicates herding, C indicates contrarian. This table shows the proportion of herding and contrarian
behaviour when the absolute value of trader imbalance is greater than 2 and smaller than 12.

Table 4 reports our theoretical predictions under various combinations of signal precision q and pro-

portion of informed traders µ . Under all market specifications, we observe a high proportion of contrarian

trading and a small proportion of herd trading. When q = 0.7,µ = 1, the market structure aligns with previ-

ous experiments, where all traders are informed and the signal is fairly precise. We found 4% of herding, in

line with previous findings of 12% and 5%. We also observe 21% of contrarian behaviour, consistent with

previous findings of 19% and 28%.
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4.5 Simplicity or Predictive Power

In our generalised CPT trader herding model, it is challenging to track the driving forces. Shutting down

gain-loss asymmetry in CPT can give us clean predictions, as shown in Kendall (2023). There is a trade-off

between predictive power and closed-form predictions. We show that for markets dominated by loss-averse

traders, shutting down gain-loss asymmetry is not too costly. One can rely on an extended CPT trader

herding model without gain-loss asymmetry. For the extended model without gain-loss asymmetry, we set

value function exponents to be the same in loss and gain region γ = (γG + γL)/2; the probability weighting

exponents in loss and gain region to be the same too δ = (δG +δL)/2. However, for markets consisting of a

substantial proportion of loss-tolerant traders, such restriction can be very costly on predictive power.

To test this, we calibrate our model using CPT values for 73 subjects reported in Table 3 pooled session

results by Zeisberger, Vrecko, and Langer (2012). We generate predictions for those subjects using the gen-

eralised CPT trader herding model and an extended CPT trader herding model without gain-loss asymmetry.

This gives us the proportion of trades that engage in herding and contrarian behaviour for a given market

specification, that is fixing q,µ and price. Then we take the absolute differences between the proportions

predicted by the generalised and extended models. We consider absolute differences smaller than 1% as

consistent. In other words, we allow a 1% error in the proportions predicted.

For instance, for a given market specification, if the generalised model predicts 5% of the 73 subjects

herd and the extended model predicts 5.8%, shutting down gain-loss asymmetry creates a 0.8% prediction

error. This is within 1%, we consider predictions to be consistent. We do so for various market specifications.

Finally, we divided the total number of consistent markets by the total number of markets. This gives us a

consistent rate of predicting herding and contrarian dynamics if gain-loss asymmetry is shut down.

The market specification is as follows: (i)We set 5 different signal precisions, where q= 0.6,0.7,0.8,0.9.

(ii)We allow 5 different proportions of informed traders, where µ = 0.2,0.4,0.6,0.8,1. (iii)We consider

absolute trade imbalances of 1,2,3,4. The specifications give us a total of 160 markets, computed by number

of µ*number of q*number of trade imbalances=5*4*(4*2).

Table 5 shows the cost of shutting down gain-loss asymmetry in CPT when only loss-averse subjects are

considered. Out of the 73 subjects, 48 are loss averse, we use those subjects. For instance, when µ is 0.2

and q is 0.6 and the absolute trade imbalance is 1, the proportion of contrarian behaviour predicted by the

extended model deviates 1% in absolute terms from the ones predicted by the generalised model. Deviations

smaller than 1% are considered consistent. Out of the 160 market specifications, predictions are consistent

in 87% of the markets. Therefore, turning off gain-loss asymmetry is generally not too costly if the subject

group consists of a high proportion of loss-averse subjects.

Table 6 reports the same, but considers all subjects. The overall model fitness is only 51%. Under

certain market specifications, shutting down gain-loss asymmetry can be extremely costly on the model’s

predictive power on herding and contrarian behaviour. When µ is 0.4 and q is 0.6 at 1 trade imbalance, the

difference in the proportion of contrarian behaviour predicted differs by 8%. Therefore, one has to rely on

the generalised CPT trader herding model when there is a substantial number of loss-tolerant subjects. In

this exercise, around 34% of subjects are loss tolerant.
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Table 5: Cost of shutting down gain-loss asymmetry:loss averse only

µ=0.2 µ=0.4 µ=0.6 µ=0.8 µ=1
IB H C H C H C H C H C

q = 0.6

1 0% 1% 0% 1% 0% 0% 0% 0% 0% 0%
2 0% 1% 0% 1% 0% 1% 0% 0% 0% 0%
3 0% 1% 0% 1% 0% 1% 0% 0% 0% 0%
4 0% 1% 0% 1% 0% 0% 0% 0% 0% 0%

q = 0.7

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 1% 0% 1% 0% 0% 0% 0%
4 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

q = 0.8

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 1% 0% 1%
4 0% 0% 0% 1% 0% 0% 0% 0% 0% 0%

q = 0.9

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 1% 0% 1%
4 0% 0% 0% 1% 0% 1% 0% 1% 0% 0%

Absolute difference in percentage with and without gain-loss asymmetry. H indicates herding, C
indicates contrarian, and IB indicates absolute trade imbalances. Lose averse subjects only.

Table 6: Cost of shutting down gain-loss asymmetry:all types

µ=0.2 µ=0.4 µ=0.6 µ=0.8 µ=1
IB H C H C H C H C H C

q = 0.6

1 5% 5% 7% 8% 2% 3% 2% 4% 3% 3%
2 5% 5% 7% 6% 1% 3% 2% 5% 3% 5%
3 6% 5% 7% 6% 1% 4% 3% 5% 5% 5%
4 5% 5% 7% 6% 2% 2% 4% 3% 5% 5%

q = 0.7

1 1% 0% 2% 1% 3% 1% 3% 1% 1% 1%
2 0% 0% 3% 2% 3% 1% 2% 1% 1% 1%
3 1% 0% 3% 2% 2% 2% 1% 2% 1% 2%
4 1% 1% 3% 3% 2% 3% 1% 2% 0% 2%

q = 0.8

1 2% 1% 1% 0% 0% 1% 0% 1% 0% 1%
2 2% 0% 0% 1% 0% 1% 0% 1% 0% 1%
3 2% 0% 0% 1% 0% 1% 0% 2% 0% 2%
4 1% 0% 0% 1% 0% 1% 0% 1% 0% 1%

q = 0.9

1 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 1% 0% 1% 0% 1% 0% 1% 0% 1%
3 0% 0% 0% 1% 0% 1% 0% 1% 0% 1%
4 0% 1% 0% 1% 0% 2% 0% 2% 0% 1%

Absolute difference in percentage with and without gain-loss asymmetry. H indicates herding, C
indicates contrarian, and IB indicates absolute trade imbalances. All subjects.
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5 Extended CPT Trader Model Dynamics

In the last section, we have shown that for markets consisting of a high proportion of loss-averse informed

CPT traders, one can shut down the gain-loss asymmetry of CPT. In section 5.1, we first present the extended

CPT trade model without gain-loss asymmetry. Then we obtain closed-form solutions for prices under

herding, contrarian behaviour and abstention from trade. We don’t place restrictions on informed traders

being loss-averse. Even though the proportion of loss-tolerant traders has to be small to use the extended

model, it is no 0. In section 5.2, we additionally impose restrictions by allowing only loss-averse traders.

This framework is very similar to Kendall (2023)’s model, the only difference comes from the definition of

herding and contrarian behaviour. Regardless, we show that our model can create similar predictions as in

Kendall (2023)’s model, giving us additional assurance on our modelling. All proofs are in appendix 7.3.

5.1 No Gain-Loss Asymmetry In CPT

Lemma 2. Conditions 1 and 2 of buy herding and contrarianism for the extended model can be expressed

with buy extended bias upper bound (bEBUB); sell herding and contrarianism can be expressed with sell

extended bias upper bound (sEBUB):

(i)Buy: λ < bEBUB. bEBUB = [
µ(1−q)+θ

θ +µq
]γ

K
1−K

min{1,(
1−K

K
)1+δ (

pt

1− pt
)δ−γ}

(ii)Sell: λ < sEBUB. sEBUB = [
µ(1−q)+θ

θ +µq
]γ

1−K
K

min{1,(
K

1−K
)1+δ (

pt

1− pt
)γ−δ}

where K is a dummy variable takes value q if we have low signal, 1−q if we have high signal

Lemma 2 builds on top of lemma 1 directly. Shutting down gain-loss asymmetry gives us a more clean

bias upper bound on loss attitude. VB and VS variables in lemma 1 essentially become 1. We call the new

bias upper bound as buy/sell extended bias upper bound (bEBUB,sEBUB).

Theorem 2. Necessary and sufficient conditions for herding and contrarianism for the extended model.

(i)If an informed trader engages in buy herding (contrarianism), then λ is smaller than bEBUB and pt > 0.5

(pt < 0.5). (ii)If an informed trader engages in sell herding (contrarianism), then λ is smaller than sEBUB

and pt < 0.5 (pt > 0.5).

Theorem 2 follows the same idea of 1 but is expressed in terms of extended bias upper bounds. Having

laid out the extended model, now we can investigate the effects of contrarianism and herding on prices. We

denote ∆pt as the price deviation from the initial period.

Proposition 3. The region of prices and deviation from the initial price under contrarianism and herding

are:
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Scenario 1: γ > δ

(i) Contrarianism buy: pt ∈ (0,
1

1+L1
); |∆pt | ∈ (|1−L1

1+L1
|,100%)

(ii) Contrarianism sell: pt ∈ (
1

1+L2
,1); |∆pt | ∈ (|1−L2

1+L2
|,100%)

(iii) Herd buy: pt ∈ (0.5,
1

1+L1
); |∆pt | ∈ (0%, |1−L1

1+L1
|)

(iv) Herd sell: pt ∈ (
1

1+L2
,0.5); |∆pt | ∈ (0%, |1−L2

1+L2
|)

Scenario 2: γ < δ

(i) Contrarianism buy: pt ∈ (
1

1+L1
,0.5); |∆pt | ∈ (0%,

1−L1

1+L1
)

(ii) Contrarianism sell: pt ∈ (0.5,
1

1+L2
); |∆pt | ∈ (0%, |1−L2

1+L2
|)

(iii) Herd buy: pt ∈ (
1

1+L1
,1); |∆pt | ∈ (|1−L1

1+L1
|,100%)

(iv) Herd sell: pt ∈ (0,
1

1+L2
); |∆pt | ∈ (|1−L2

1+L2
|,100%)

where L1 = { 1
λ
[
µ(1−q)+θ

θ +µq
]γ [

1−K
K

]δ}1/(δ−γ), L2 = { 1
λ
[
µ(1−q)+θ

θ +µq
]γ [

K
1−K

]δ}1/(γ−δ )

Given that γ > δ . The effects on prices under contrarianism are much more significant than under

herding. Under contrarianism, given a buy order, the price deviation is at least |(1−L1)/(1+L1)| and up

to 100%. While under herding, price deviation is at most |(1−L1)/(1+L1)| and as low as 0%. The same

idea applies to the sell side but we have L2 instead. The results are opposite when γ < δ , where effects

on price under herding are more significant than under contrarianism. Under contrarianism, given the buy

order, the price deviation is at most |(1− L1)/(1+ L1)|. While under herding, price deviation is at least

|(1−L1)/(1+L1)| and up to 100%. The same idea applies to the sell side but we have L2 instead.

The intuition is as follows. Recall in our modified model, the actions of informed traders are: (i)Buy

if EΩ[π|S,Ht ] = Ω(VH − at) ∗w[P(VH |S,Ht)] +Ω(VL − at) ∗w[P(VL|S,Ht)] > 0. (ii)Sell if EΩ[π|S,Ht ] =

Ω(bt −VH)∗w[P(VH |S,Ht)]+Ω(bt −VL)∗w[P(VL|S,Ht)]> 0.

The expected utility of a trading action has two parts. Firstly the value function Ω gives the perceived

utility by the trader for potential payoffs at low and high-value states. Secondly, the perceived probability

associated with each state. Under scenario 1, the probability distortion δ is smaller than the value function

curvature parameter γ . Loosely speaking, contrarians buy when the price is low and sell when the price is

high. Herd traders buy when the price is high and sell when the price is low. The price needs to deviate

more from the initial price for contrarians’ action to be profitable. For instance, given a buy order, consider

first the value function part, contrarians would want the price to be as close to 0 as possible (as far from the

initial price of 0.5 as possible). This would give them a high payoff if high-value state 1 realises. For the

probability part, a low price indicates a low probability for the high-value state, this discourages them from

buying at a lower price. However, since the probability distortion parameter δ is lower, there is a stronger

overweighting of small probabilities. This offsets the negative impact of a smaller price on high-value state

probability.

While herd traders, want the price to be higher than 0.5 so that they are following the crowd. Firstly,
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consider the value function part, the price cannot be too high (not too close to high-value state 1) as a high

price would squeeze out their payoff when the high-value state realises. This places an upper bound on

price deviation for herd traders. Secondly, for the probability part, a high price indicates a high probability

for the high-value state, this encourages them to buy at a higher price. However, since the probability

distortion parameter δ is lower, there is a stronger underweighting of high probabilities. This offsets the

positive impact of higher prices on high-value state probability. Thus, given γ > δ , price deviation under

contrarianism is more significant than herding.

Under scenario 2, the probability distortion δ is larger than the value function curvature parameter

γ . Holding everything else constant, the probability distortion is now weaker. For contrarian traders, the

overweighting of small probabilities is now weaker, and this is not enough to offset the negative impact of

smaller prices on high-value state probability. Thus, there is now an upper bound on price deviation for

contrarian traders. For herd traders, the underweighting of high probabilities is now weaker, and this is

not enough to offset the positive impact of higher prices on high-value state probability. Pushing the upper

bound generated by the value function part close to the high-value state. Thus, given γ < δ , price deviation

under herding is more significant than contrarianism.

Proposition 4. Given the signal. If δ > γ , the no trade price region is pt ∈ [
1

1+L2
,

1
1+L1

]. If δ < γ , the

no trade price region is pt ∈ [
1

1+L1
,

1
1+L2

].

Experiments on AZ theory typically found a high proportion of no trade, inconsistent with the theory.

This impedes the flow of information into the market and affects the price discovery process negatively.

With CPT traders, we can generate similar dynamics. This follows naturally from proportion 3, where we

defined variables L1 and L2 as functions of model parameters. Recall that, an informed trader does not trade

if neither buy nor sell generates positive utility for her. This is also equivalent to saying if given a signal,

B2 and S2 conditions of our definition 1 for herding and contrarian behaviour are violated. Then there is no

trade. Those are encoded in the second part of the min term in our bEBUB and SEBUB.

5.2 Loss Averse Traders Only

How does our model compare to Kendall (2023)’s CPT trader herding model? To answer this, we make the

same assumption that there is no gain-loss asymmetry and only loss-averse traders. We use the extended

model and only allow loss-averse traders. Proposition 5 highlights the difference in our models, coming

from how we defined herding and contrarian behaviour. Proposition 6 shows the similarity of our models,

both can predict herding and contrarian dynamics based on the relation between γ and δ .

Proposition 5. Given loss-averse informed traders (λ > 1), buy herding and contrarianism cannot occur

given a high signal, and sell herding and contrarianism cannot occur given a low signal.

This proposition can be derived directly using theorem 2. bEBUB is smaller than 1 for buy herding or

contrarianism given a high signal, and sEBUB is smaller than 1 for sell herding or contrarianism given a
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low signal. Loss-averse informed traders with λ > 1 violate the condition. The intuition is that a loss-averse

informed trader would never obtain a positive expected utility by trading against their private signal when

considering only the private signal. Trading against private signals is costly and generates losses, loss averse

traders are not willing to do so. Essentially, condition 1 of definition 1 for herding and contrarianism is

violated. In other words, informed traders with a high signal would never have sold conditional on only

private signal, this prevents buy herding or contrarianism since condition B1 is violated. Informed traders

with a low signal would never have bought conditional on only private signal, this prevents sell herding

or contrarianism since condition S1 is violated. This proposition does not hold in Kendall (2023)’s model

since condition 1 of our herding and contrarianism definition is the driving force here, which is absent in his

model. This reduces potential overestimation.

Proposition 6. Given loss aversion, when γ > δ only contrarian behaviour is possible, when δ > γ only

herding is possible.

Proposition 6 tells us that if informed traders are loss averse and probability distortion δ is smaller

than value function curvature γ , only contrarianism can occur (buy contrarianism given a low signal, sell

contrarianism given a high signal to be precise). When δ > γ , only herding can occur (buy herding given low

signal, sell herding given high signal). This proposition shares similarities to Kendall (2023)’s predictions,

but we require a clear switch in the trading decisions. The similarity to his results gives us additional

assurance on our modelling.

Preference for future returns generates such a pattern, as shown in Kendall (2023). When δ > γ , the

investor has a preference for negative skewness, they buy high and sell low, creating herding behaviour.

When δ < γ , the investor has a preference for positive skewness, they sell high buy low, creating contrarian

behaviour. A more detailed discussion is in Kendall (2023)’s paper.

6 Conclusion

We have presented a generalised model of herding and contrarian behaviour in financial markets by incorpo-

rating biased informed traders through cumulative prospect theory by Tversky and Kahneman (1992). Our

study builds on the sequential trading market microstructure herding framework established by Avery and

Zemsky (1998) and extends it beyond the confines of rational expected utility theory. By integrating CPT,

we consider psychological factors such as loss attitude and probability distortions, crucial in understanding

traders’ decision-making. This complements Kendall (2023)’s work on CPT trader herding model. Our

model is more general in the sense that we allow gain-loss asymmetry in CPT and loss-tolerant traders, both

supported by recent literature. Our model adopts a stringent definition, requiring a clear switch in trading

decisions induced by history, aligning with the majority of literature started with Avery and Zemsky (1998).

Contrary to Kendall (2023)’s predictions, we found that generalised CPT traders can engage in both

herding and contrarian behaviour, instead of a clear-cut preference. This aligns with the unexplained ex-

perimental observations. Moreover, we found herding and contrarian behaviour can occur at mild price
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deviations instead of just extreme prices. More importantly, our findings reveal that in markets with a

substantial proportion of loss-tolerant agents, the elimination of gain-loss asymmetry can incur significant

costs on the model’s predictive power, emphasizing the necessity of employing the generalised model. Con-

versely, in markets dominated by loss-averse traders, such an assumption is less costly, allowing reliance

on an extended model without gain-loss asymmetry for closed-form results. We show that the extended

model can generate consistent results with Kendall (2023)’s model, providing us extreme assurance on our

modelling.

Through simulations, we showed how information cascades can arise with heterogeneous CPT traders.

This pushes asset prices into an incorrect state, causing market inefficiency. Then we created cross-country

predictions for median subjects in 53 countries. We found that developed economies have stronger herding

and weaker contrarian tendencies compared to developing countries, holding market structure constant. As

markets become more informed, such tendencies weaken in both regions. This suggests a more developed

financial markets can reduce herding and contrarian behaviour. Finally, we reconciled previous experimental

evidence using Zeisberger, Vrecko, and Langer (2012)’s CPT estimates. Under the same market structure

as previous experiments, we match the levels of herding and contrarian behaviour.

Our findings have important implications for regulators and practitioners. Our theorem 1 can generate

market-specific predictions. This allows regulators to monitor the occurrence of herding or contrarianism.

For instance, the bias upper bound fluctuates with prices and market structure. Once this bound becomes

larger than informed traders’ loss attitude, herding or contrarianism occurs. Our research opens avenues

for future exploration. Firstly, by aligning our model with Cipriani and Guarino (2014)’s and carefully

calibrating CPT values for that market, empirical testing of our model becomes feasible. This could po-

tentially generate interesting market and country-specific predictions on herding and contrarian behaviour.

Secondly, future experiments testing our model could yield interesting findings. Specifically, researchers

should examine trader behaviour when only private signals are permitted in decision-making. This involves

identifying such decisions in the first period before any trading takes place. This would allow one to observe

a clear switch in trading decisions induced by history. Additionally, one should control for Bayesian updat-

ing errors in the fashion of Kendall (2023)’s main treatment. However, the Bayesian posterior should not

be provided directly. As it may eliminate the probability distortion of CPT, creating more herd-type traders.

One can perhaps provide the Bayesian updating formula so that uncertainty and probability distortion are

still present.
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7 Appendix

7.1 Key formulas for the AZ model

Here I present the key formulas of AZ framework, taken from Boortz (2016).

(i)Conditional buy and sell probabilities.

P(xt = buy|VL) = P(xt = sell|VH) = µ(1−q)+θ (1)

P(xt = sell|VL) = P(xt = buy|VH) = µq+θ (2)

(ii)Ask and bid prices

at = E[V |Ht ,xt = buy] =
(µq+θ)pt

(µq+θ)pt +[µ(1−q)+θ ](1− pt)
(3)

bt = E[V |Ht ,xt = sell] =
[µ(1−q)+θ ]pt

[µ(1−q)+θ ]pt +(µq+θ)(1− pt)
(4)

(iii)Expected value of assets given low and high signal

E[V |SL,Ht ] =
(1−q)pt

(1−q)pt +q(1− pt)
(5)

E[V |SH ,Ht ] =
qpt

qpt +(1−q)(1− pt)
(6)

7.2 Key formulas for the modified model

(i)Conditional asset value probabilities. P(SH |VH) = P(SL|VL) = q; P(SH |VL) = P(SL|VH) = 1−q

P(VH |SH ,Ht) =
P(SH |VH)P(VH |Ht)

P(SH |VH)P(VH |Ht)+P(SH |VL)P(VL|Ht)
=

qpt

qpt +(1−q)(1− pt)

P(VH |SL,Ht) =
P(SL|VH)P(VH |Ht)

P(SL|VH)P(VH |Ht)+P(SL|VL)P(VL|Ht)
=

(1−q)pt

(1−q)pt +q(1− pt)

P(VL|SH ,Ht) = 1−P(VH |SH ,Ht) =
(1−q)(1− pt)

qpt +(1−q)(1− pt)

P(VL|SL,Ht) = 1−P(VH |SL,Ht) =
q(1− pt)

(1−q)pt +q(1− pt)
(ii) Herd and Contrarianism buy
High Signal case

(B1) Ω[π|SH ] =−λ [−(b1 −VH)]
γLq+(b1 −VL)

γG(1−q)

(B2) Ω[π|SH ,Ht ] = (VH −at)
γG

P(VH |SH ,Ht)
δG

(P(VH |SH ,Ht)δG +[1−P(VH |SH ,Ht)]δG)1/δG

−λ [−(VL −at)]
γL

P(VL|SH ,Ht)
δL

(P(VL|SH ,Ht)δL +[1−P(VL|SH ,Ht)]δL)1/δL

Low Signal case
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(B1) Ω[π|SL] =−λ [−(b1 −VH)]
γL(1−q)+(b1 −VL)

γGq

(B2) Ω[π|SL,Ht ] = (VH −at)
γG

P(VH |SL,Ht)
δG

(P(VH |SL,Ht)δG +[1−P(VH |SL,Ht)]δG)1/δG

−λ [−(VL −at)]
γL

P(VL|SL,Ht)
δL

(P(VL|SL,Ht)δL +[1−P(VL|SL,Ht)]δL)1/δL

(iii) Herd and Contrarianism sell
High Signal case

(B1) Ω[π|SH ] = (VH −a1)
γGq−λ [−(VL −a1)]

γL(1−q)

(B2) Ω[π|SH ,Ht ] =−λ [−(bt −VH)]
γL

P(VH |SH ,Ht)
δL

(P(VH |SH ,Ht)δL +[1−P(VH |SH ,Ht)]δL)1/δL

+(bt −VL)
γG

P(VL|SH ,Ht)
δG

(P(VL|SH ,Ht)δG +[1−P(VL|SH ,Ht)]δG)1/δG

Low Signal case

(B1) Ω[π|SL] = (VH −a1)
γG(1−q)−λ [−(VH −a1)]

γLq

(B2) Ω[π|SL,Ht ] =−λ [−(bt −VH)]
γL

P(VH |SL,Ht)
δL

(P(VH |SL,Ht)δL +[1−P(VH |SL,Ht)]δL)1/δL

+(bt −VL)
γG

P(VL|SL,Ht)
δG

(P(VL|SL,Ht)δG +[1−P(VL|SL,Ht)]δG)1/δG

7.3 Proofs

Lemma 1: Conditions 1 and 2 of buy herding and contrarianism for the generalised model can be ex-

pressed with buy generalised bias upper bound (bGBUB); sell herding and contrarianism can be expressed

with sell generalised bias upper bound (sGBUB):

(i)Buy: λ < bGBUB. bGBUB =
[µ(1−q)+θ ]γG

(θ +µq)γL

K
1−K

min{(2θ +µ)γL−γG ,
(1−K)1+δG

K1+δL

pδG−γL
t

(1− pt)δL−γG
VB}

(ii)Sell: λ < sGBUB. sGBUB =
[µ(1−q)+θ ]γG

(θ +µq)γL

1−K
K

min{(2θ +µ)γL−γG ,
(K)1+δG

(1−K)1+δL

pγG−δL
t

(1− pt)γL−δG
VS}

where VB =C[(µq+θ)pt +(µ(1−q)+θ)(1− pt)]
γL−γG , VS =C[(µ(1−q)+θ)pt +(µq+θ)(1− pt)]

γL−γG

C = [(1−K)pt +K(1− pt)]
δL−δG

{[(1−K)pt ]
δL +[K(1− pt)]

δL}1/δL

{[(1−K)pt ]δG +[K(1− pt)]δG}1/δG

K is a dummy variable takes value q if we have low signal, 1−q if we have high signal

Proof. I prove for buy herding and contrarianism given low signal first.

(B1)We prove this using definition 1.A:

0 <−λ (VH −b1)
γLP(VH |SL)+(b1 −VL)

γGP(VL|SL)⇒ λ <
P(VL|SL)

P(VH |SL)
[
(b1 −VL)

γG

(VH −b1)γL
]⇒ λ <

q
1−q

[
(b1)

γG

(1−b1)γL
]
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Given that prior p1 = 0.5, using the formula on bid price in Appendix 7.1 we can derive that:

b1 =
µ(1−q)+θ

µ −µq+θ +µq+θ
=

µ(1−q)+θ

µ +2θ
⇒ 1−b1 =

θ +µq
µ +2θ

(b1)
γG

(1−b1)γL
= (

µ(1−q)+θ

µ +2θ
)γG(

µ +2θ

θ +µq
)γL =

(µ(1−q)+θ)γG

(θ +µq)γL
(µ +2θ)γL−γG

Substitute this into the inequality.

λ <
(µ(1−q)+θ)γG

(θ +µq)γL
(µ +2θ)γL−γG(

q
1−q

)

(B2)Now we derive condition (B2):

0 < (VH −at)
γGw[P(VH |SL,Ht)]−λ (at −VL)

γLw[P(VL|SL,Ht)]

λ <
(VH −at)

γG

(at −VL)γL

w[P(VH |SL,Ht)]

w[P(VL|SL,Ht)]
⇒ λ <

(1−at)
γG

(at)γL

w[P(VH |SL,Ht)]

w[P(VL|SL,Ht)]

For the first term, using formula for at in Appendix 7.1, we derive:

(1−at)
γG = (

[µ(1−q)+θ ](1− pt)

(µq+θ)pt +[µ(1−q)+θ ](1− pt)
)γG ,(

1
at
)γL = (

(µq+θ)pt +[µ(1−q)+θ ](1− pt)

(µq+θ)pt
)γL

(1−at)
γG

(at)γL
=

(µ(1−q)+θ)γG

(µq+θ)γL

(1− pt)
γG

pγL
t

{(µq+θ)pt +[µ(1−q)+θ ](1− pt)}γL−γG

For the second term, using the formula for probabilities in Appendix 7.2, we derive:

w[P(VH |SL,Ht)]

w[P(VL|SL,Ht)]
=

P(VH |SL,Ht)
δG

(P(VH |SL,Ht)δG +[1−P(VH |SL,Ht)]δG)1/δG

(P(VL|SL,Ht)
δL +[1−P(VL|SL,Ht)]

δL)1/δL

P(VL|SL,Ht)δL

=
P(VH |SL,Ht)

δG

(P(VH |SL,Ht)δG +P(VL|SL,Ht)δG)1/δG

(P(VL|SL,Ht)
δL +P(VH |SL,Ht)

δL)1/δL

P(VL|SL,Ht)δL

Friction 1 = [
(1−q)pt

(1−q)pt +q(1− pt)
]δG

(1−q)pt +q(1− pt)

{[(1−q)pt ]δG +[q(1− pt)]δG}1/δG

Friction 2 = [
(1−q)pt +q(1− pt)

q(1− pt)
]δL

{[q(1− pt)]
δL +[(1−q)pt ]

δL}1/δL

(1−q)pt +q(1− pt)

Combined =
[(1−q)pt ]

δG

[q(1− pt)]δL
[(1−q)pt +q(1− pt)]

δL−δG
{[(1−q)pt ]

δL +[q(1− pt)]
δL}1/δL

{[(1−q)pt ]δG +[q(1− pt)]δG}1/δG

Define below:

VB =C{(µq+θ)pt +[µ(1−q)+θ ](1− pt)}γL−γG

C = [(1−q)pt +q(1− pt)]
δL−δG

{[(1−q)pt ]
δL +[q(1− pt)]

δL}1/δL

{[(1−q)pt ]δG +[q(1− pt)]δG}1/δG
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Combine terms give us: λ <
(µ(1−q)+θ)γG

(µq+θ)γL

(1−q)δG

qδL

pδG−γL
t

(1− pt)δL−γG
VB

(Necessary condition):

Now we use B1 and B2 to derive the necessary condition. Both B1 and B2 provide an upper bound on λ ,

we only need the more restrictive one to be satisfied. B2 can be rewritten as:

λ <
(µ(1−q)+θ)γG

(µq+θ)γL

q
1−q

(1−q)1+δG

q1+δL

pδG−γL
t

(1− pt)δL−γG
VB

We can rewrite B1 and B2 as:

λ <
[µ(1−q)+θ ]γG

(θ +µq)γL

q
1−q

min{(2θ +µ)γL−γG ,
(1−q)1+δG

q1+δL

pδG−γL
t

(1− pt)δL−γG
VB}

The rest follow the same idea and are symmetric, once derived, we apply dummy variable D to capture this.

QED

Lemma 2: Conditions 1 and 2 of buy herding and contrarianism for the extended model can be expressed

with buy extended bias upper bound (bEBUB); sell herding and contrarianism can be expressed with sell

extended bias upper bound (sEBUB):

(i)Buy: λ < bEBUB. bEBUB = [
µ(1−q)+θ

θ +µq
]γ

K
1−K

min{1,(
1−K

K
)1+δ (

pt

1− pt
)δ−γ}

(ii)Sell: λ < sEBUB. sEBUB = [
µ(1−q)+θ

θ +µq
]γ

1−K
K

min{1,(
K

1−K
)1+δ (

pt

1− pt
)γ−δ}

where K is a dummy variable takes value q if we have low signal, 1−q if we have high signal

Proof. Set γ and δ in both gain and loss region in lemma 1, we have

C = [(1−K)pt +K(1− pt)]
δ−δ

{[(1−K)pt ]
δ +[K(1− pt)]

δ}1/δ

{[(1−K)pt ]δ +[K(1− pt)]δ}1/δ
= 1

VB = 1[(µq+θ)pt +(µ(1−q)+θ)(1− pt)]
γ−γ = 1, VS = 1[(µ(1−q)+θ)pt +(µq+θ)(1− pt)]

γ−γ = 1

Rename bEBUB and sEBUB to bEBUB and sEBUB to reflect the restricted model, we have:

bEBUB =
[µ(1−q)+θ ]γ

(θ +µq)γ

K
1−K

min{(2θ +µ)γ−γ ,
(1−K)1+δ

K1+δ

pδ−γ

t

(1− pt)δ−γ
1}

sEBUB =
[µ(1−q)+θ ]γ

(θ +µq)γ

1−K
K

min{(2θ +µ)γ−γ ,
(K)1+δ

(1−K)1+δ

pγ−δ

t

(1− pt)γ−δ
1}

Then, using that (2θ +µ)γ−γ = 1, we obtain bEBUB and sEBUB QED

Proposition 3: The region of prices and deviation from the initial price under contrarianism and herding

are:
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Scenario 1: γ > δ

(i) Contrarianism buy: pt ∈ (0,
1

1+L1
); |∆pt | ∈ (|1−L1

1+L1
|,100%)

(ii) Contrarianism sell: pt ∈ (
1

1+L2
,1); |∆pt | ∈ (|1−L2

1+L2
|,100%)

(iii) Herd buy: pt ∈ (0.5,
1

1+L1
); |∆pt | ∈ (0%, |1−L1

1+L1
|)

(iv) Herd sell: pt ∈ (
1

1+L2
,0.5); |∆pt | ∈ (0%, |1−L2

1+L2
|)

Scenario 2: γ < δ

(i) Contrarianism buy: pt ∈ (
1

1+L1
,0.5); |∆pt | ∈ (0%,

1−L1

1+L1
)

(ii) Contrarianism sell: pt ∈ (0.5,
1

1+L2
); |∆pt | ∈ (0%, |1−L2

1+L2
|)

(iii) Herd buy: pt ∈ (
1

1+L1
,1); |∆pt | ∈ (|1−L1

1+L1
|,100%)

(iv) Herd sell: pt ∈ (0,
1

1+L2
); |∆pt | ∈ (|1−L2

1+L2
|,100%)

where L1 = { 1
λ
[
µ(1−q)+θ

θ +µq
]γ [

1−K
K

]δ}1/(δ−γ), L2 = { 1
λ
[
µ(1−q)+θ

θ +µq
]γ [

K
1−K

]δ}1/(γ−δ )

Proof. We utilise Lemma 2(i) and prove buy side scenario 2 here. Proof for the rest follows the same idea.

From lemma 2(i) we know that bEBUB =
[µ(1−q)+θ ]γ

(θ +µq)γ

K
1−K

min{1,
(1−K)1+δ

K1+δ

pδ−γ

t

(1− pt)δ−γ
}

=min{ [µ(1−q)+θ ]γ

(θ +µq)γ

K
1−K

,
[µ(1−q)+θ ]γ

(θ +µq)γ

K
1−K

(1−K)1+δ

K1+δ

pδ−γ

t

(1− pt)δ−γ
}. Given that herding or con-

trarian behaviour occurs, the second part of the min term gives us the solution for the price. It is essentially

condition 2 (B2) of our herding and contrarian behaviour definition. Assuming δ > γ , We have:

λ <
[µ(1−q)+θ ]γ

(θ +µq)γ

K
1−K

(1−K)1+δ

K1+δ

pδ−γ

t

(1− pt)δ−γ
→ λ < (

[µ(1−q)+θ ]

(θ +µq)
)γ(

1−K
K

)δ (
pt

1− pt
)δ−γ

→ (
1− pt

pt
)δ−γ <

1
λ
(
[µ(1−q)+θ ]

(θ +µq)
)γ(

1−K
K

)δ → 1− pt

pt
< [

1
λ
(
[µ(1−q)+θ ]

(θ +µq)
)γ(

1−K
K

)δ ]1/(δ−γ)

→ 1− pt

pt
< L1 → pt >

1
1+L1

This is the lower bound on price, the upper bound price for contrarianism buy is 0.5 and for herd buy is

1 by definition. The price deviation for lower bound is |∆pt | = |

1
1+L1

−0.5

0.5
| = | 2

1+L1
− 1| = |1−L1

1+L1
|.

The price deviation for upper bound of contrarianism buy is ∆pt =
0.5−0.5

0.5
= 0; for herd buy is ∆pt =

1−0.5
0.5

= 100%.

QED

Proposition 4: Given the signal. If δ > γ , the no trade price region is pt ∈ [
1

1+L2
,

1
1+L1

]. If δ < γ , the

no trade price region is pt ∈ [
1

1+L1
,

1
1+L2

].
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Proof. To prove this, we show that neither buy or sell creates positive utility for a given signal. Using

proposition 3:

If γ > δ , for a buy order to occur, pt has to be smaller than
1

1+L1
. Thus, it is violated if pt ≥

1
1+L1

. For a

sell order to occur, pt has to be greater than
1

1+L2
. Thus, it is violated if pt ≤

1
1+L2

. As such, there is no

trade if pt ∈ [
1

1+L1
,

1
1+L2

]. If γ < δ , for a buy order to occur, pt has to be greater than
1

1+L1
. Thus, it

is violated if pt ≤
1

1+L1
. For a sell order to occur, pt has to be smaller than

1
1+L2

. Thus, it is violated if

pt ≥
1

1+L2
. As such, there is no trade if pt ∈ [

1
1+L2

,
1

1+L1
]. QED

Proposition 5: Given loss-averse informed traders (λ > 1), buy herding and contrarianism cannot occur

given a high signal, and sell herding and contrarianism cannot occur given a low signal.

Proof. For buy herding and contrarianism given high signal, K = 1−q by definition. For sell herding and

contrarianism given low signal, K = q by definition. Following lemma 2 we have:

bEBUB =
[µ(1−q)+θ ]γ

(θ +µq)γ

1−q
q

min{1,
(q)1+δ

(1−q)1+δ

pδ−γ

t

(1− pt)δ−γ
}

sEBUB =
[µ(1−q)+θ ]γ

(θ +µq)γ

1−q
q

min{1,
(q)1+δ

(1−q)1+δ

pγ−δ

t

(1− pt)γ−δ
}

Given the private signal is informative (q > 0.5 ⇒ 1− q < q). θ ,µ,γ > 0 by assumption. We can show

(i)
1−q

q
< 1 (ii)[

µ(1−q)+θ

θ +µq
]γ < 1. The proof for (ii) is as follows:

(1−q)< q ⇒ µ(1−q)< µq ⇒ µ(1−q)+θ < θ +µq ⇒ µ(1−q)+θ

θ +µq
< 1 ⇒ [

µ(1−q)+θ

θ +µq
]γ < 1

Therefore: (
µ(1−q)+θ

θ +µq
)γ(

1−q
q

) < 1. bEBUB = (term < 1) ∗min[1, ...] < 1, sEBUB = (term < 1) ∗

min[1, ...]< 1. Both bEBUB and sRBUp are smaller than 1, a loss-averse trader would violate the conditions.

QED

Proposition 6: Given loss aversion, when γ > δ only contrarian behaviour is possible, when δ > γ only

herding is possible.

Proof. For proposition 2, we need to prove that given loss-averse traders. When γ > δ buy herding cannot

occur given a low signal and sell herding cannot occur given a high signal. hen γ < δ buy contrarian cannot

occur given a low signal and sell contrarian cannot occur given a high signal. We compute the relevant

relaxed bias upper bound using theorem 2 and lemma 2.

From proposition 1 proof, λ < [
1−q

q
]δ [

µ(1−q)+θ

θ +µq
]γ < 1.

Given a low signal, K = q. For herd buy pt > 0.5,
pt

1− pt
> 1, (

pt

1− pt
)(δ−γ) < 1 if γ > δ . For contrarian
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buy pt < 0.5,
pt

1− pt
< 1, (

pt

1− pt
)(δ−γ) < 1 if δ > γ . bEBUB are:

bEBUB = (
µ(1−q)+θ

θ +µq
)γ(

q
1−q

)min[1,(
1−q

q
)(δ+1)(

pt

1− pt
)(δ−γ)]

= min{[µ(1−q)+θ

θ +µq
]γ [

q
1−q

], [
µ(1−q)+θ

θ +µq
]γ [

1−q
q

]δ (
pt

1− pt
)(δ−γ)}

= min{[µ(1−q)+θ

θ +µq
]γ [

q
1−q

], term < 1}< 1

Given a high signal, K = 1−q. For herd sell pt < 0.5,
pt

1− pt
< 1, (

pt

1− pt
)(γ−δ ) < 1 if γ > δ . For contrarian

sell pt > 0.5,
pt

1− pt
> 1, (

pt

1− pt
)(γ−δ ) < 1 if δ > γ . sEBUB are:

sEBUB = (
µ(1−q)+θ

θ +µq
)γ(

q
1−q

)min[1,(
1−q

q
)(δ+1)(

pt

1− pt
)(γ−δ )]

= min{[µ(1−q)+θ

θ +µq
]γ [

q
1−q

], [
µ(1−q)+θ

θ +µq
]γ [

1−q
q

]δ [
pt

1− pt
](γ−δ )}

= min{[µ(1−q)+θ

θ +µq
]γ [

q
1−q

], term < 1}< 1

Therefore, bEBUB sEBUB is not satisfied under those scenarios.

QED

7.4 Detailed Cross Country Predictions

In Table 7, we show whether median CPT subjects estimated by Rieger, Wang, and Hens 2017 for each

country can induce herding or contrarian behaviour under various market specifications. H and C are short

for herding and contrarian. 1 indicates that herding or contrarian can occur, and 0 indicates that it cannot. In

section 4.3, we divided the countries into advanced and developing countries, following the IMF 2023 def-

inition. With the following being developing countries: Angola, Argentina, Azerbaijan, Bosnia.Her, Chile,

China, Colombia, Croatia, Georgia, Hungary, India, Lebanon, Malaysia, Mexico, Moldova, Nigeria, Poland,

Romania, Russia, Tanzania, Thailand, Turkey, Vietnam. All others are defined as advanced countries.

Table 7: Herding and Contrarian In Different Countries under Various Specifications

µ : 0.2
q : 0.6

µ : 0.4
q : 0.6

µ : 0.6
q : 0.6

µ : 0.8
q : 0.6

µ : 1
q : 0.6

µ : 0.2
q : 0.7

µ : 0.4
q : 0.7

µ : 0.6
q : 0.7

µ : 0.8
q : 0.7

µ : 1
q : 0.7

Country H C H C H C H C H C H C H C H C H C H C
Angola 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Argentina 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
Australia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Austria 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Azerbaijan 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Belgium 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
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Bosnia.Her 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Canada 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1
Chile 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0
China 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Colombia 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
Croatia 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
Czech Rep 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
Denmark 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1
Estonia 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Finland 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
France 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Georgia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Germany 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Greece 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Hong Kong 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Hungary 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
India 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Ireland 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
Israel 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Italy 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Japan 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Lebanon 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Lithuania 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Luxembourg 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Malaysia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Mexico 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Moldova 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Netherlands 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
NewZealand 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Nigeria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Norway 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Poland 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Portugal 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Romania 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
Russia 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Slovenia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
SouthKorea 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Spain 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0
Sweden 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0
Switzerland 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Taiwan 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Tanzania 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thailand 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Turkey 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
UK 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
USA 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
Vietnam 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
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µ : 0.2
q : 0.8

µ : 0.4
q : 0.8

µ : 0.6
q : 0.8

µ : 0.8
q : 0.8

µ : 1
q : 0.8

µ : 0.2
q : 0.9

µ : 0.4
q : 0.9

µ : 0.6
q : 0.9

µ : 0.8
q : 0.9

µ : 1
q : 0.9

Country H C H C H C H C H C H C H C H C H C H C
Angola 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Argentina 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Australia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Austria 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
Azerbaijan 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Belgium 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
Bosnia.Her 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Canada 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
Chile 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
China 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Colombia 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Croatia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Czech Rep 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Denmark 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Estonia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
Finland 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
France 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Georgia 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
Germany 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Greece 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hong Kong 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
Hungary 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
India 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Ireland 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Israel 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Italy 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
Japan 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Lebanon 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Lithuania 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Luxembourg 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Malaysia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Mexico 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
Moldova 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Netherlands 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NewZealand 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Nigeria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Norway 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Poland 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Portugal 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Romania 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1
Russia 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Slovenia 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
SouthKorea 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Spain 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
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Sweden 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Switzerland 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Taiwan 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Tanzania 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thailand 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Turkey 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0
UK 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
USA 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vietnam 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H and C are short for herding and contrarian behaviour, 1 indicates that herding or contrarian can occur,
0 indicates that it cannot. µ shows proportion of informed traders, q shows private signal precision.
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